Subscribe Twitter

Rabu, 29 Desember 2010

AIR

Air adalah zat atau materi atau unsur yang penting bagi semua bentuk kehidupan yang diketahui sampai saat ini di bumi,tetapi tidak di planet lain.Air menutupi hampir 71% permukaan bumi. Terdapat 1,4 triliun kilometer Air sebagian besar terdapat di laut (air asin) dan pada lapisan-lapisan es (di kutub dan puncak-puncak gunung), akan tetapi juga dapat hadir sebagai awan, hujan, sungai, muka air tawar, danau, uap air, dan lautan es. Air dalam obyek-obyek tersebut bergerak mengikuti suatu siklus air, yaitu: melalui penguapan, hujan, dan aliran air di atas permukaan tanah (runoff, meliputi mata air, sungai, muara) menuju laut. Air bersih penting bagi kehidupan manusia. Di banyak tempat di dunia terjadi kekurangan persediaan air. Selain di bumi, sejumlah besar air juga diperkirakan terdapat pada kutub utara dan selatan planet Mars, serta pada bulan-bulan Europa dan Enceladus. Air dapat berwujud padatan (es), cairan (air) dan gas (uap air). Air merupakan satu-satunya zat yang secara alami terdapat di permukaan bumi dalam ketiga wujudnya tersebut.Pengelolaan sumber daya air yang kurang baik dapat menyebakan kekurangan air, monopolisasi serta privatisasi dan bahkan menyulut konflik.Indonesia telah memiliki undang-undang yang mengatur sumber daya air sejak tahun 2004, yakni Undang Undang nomor 7 tahun 2004 tentang Sumber Daya Air kubik (330 juta mil³) tersedia di bumi.

Sifat-sifat kimia dan fisika

Air
Dimensi dan struktur geometri sebuah molekul air.Model ruang-terisi menggambarkan struktur molekul air.
Informasi dan sifat-sifat
Nama sistematis air
Nama alternatif aqua, dihidrogen monoksida,
Hidrogen hidroksida
Rumus molekul H2O
Massa molar 18.0153 g/mol
Densitas dan fase 0.998 g/cm³ (cariran pada 20 °C)
0.92 g/cm³ (padatan)
Titik lebur 0 °C (273.15 K) (32 °F)
Titik didih 100 °C (373.15 K) (212 °F)
Kalor jenis 4184 J/(kg·K) (cairan pada 20 °C)
Halaman data tambahan
Disclaimer and references
Air adalah substansi kimia dengan rumus kimia H2O: satu molekul air tersusun atas dua atom hidrogen yang terikat secara kovalen pada satu atom oksigen. Air bersifat tidak berwarna, tidak berasa dan tidak berbautekanan 100 kPa (1 bar) and temperatur 273,15 K (0 °C). Zat kimia ini merupakan suatu pelarut yang penting, yang memiliki kemampuan untuk melarutkan banyak zat kimia lainnya, seperti garam-garam, gula, asam, beberapa jenis gasmolekul organik. pada kondisi standar, yaitu pada dan banyak macam
Keadaan air yang berbentuk cair merupakan suatu keadaan yang tidak umum dalam kondisi normal, terlebih lagi dengan memperhatikan hubungan antara hidrida-hidrida lain yang mirip dalam kolom oksigen pada tabel periodik, yang mengisyaratkan bahwa air seharusnya berbentuk gas, sebagaimana hidrogen sulfida. Dengan memperhatikan tabel periodik, terlihat bahwa unsur-unsur yang mengelilingi oksigen adalah nitrogen, flor, dan fosfor, sulfur dan klor. Semua elemen-elemen ini apabila berikatan dengan hidrogen akan menghasilkan gas pada temperatur dan tekanan normal. Alasan mengapa hidrogen berikatan dengan oksigen membentuk fasa berkeadaan cair, adalah karena oksigen lebih bersifat elektronegatif ketimbang elemen-elemen lain tersebut (kecuali flor). Tarikan atom oksigen pada elektron-elektron ikatan jauh lebih kuat dari pada yang dilakukan oleh atom hidrogen, meninggalkan jumlah muatan positif pada kedua atom hidrogen, dan jumlah muatan negatif pada atom oksigen. Adanya muatan pada tiap-tiap atom tersebut membuat molekul air memiliki sejumlah momen dipol. Gaya tarik-menarik listrik antar molekul-molekul air akibat adanya dipol ini membuat masing-masing molekul saling berdekatan, membuatnya sulit untuk dipisahkan dan yang pada akhirnya menaikkan titik didih air. Gaya tarik-menarik ini disebut sebagai ikatan hidrogen.
Air sering disebut sebagai pelarut universal karena air melarutkan banyak zat kimia. Air berada dalam kesetimbangan dinamis antara fase cair dan padat di bawah tekanan dan temperatur standar. Dalam bentuk ion, air dapat dideskripsikan sebagai sebuah ion hidrogen (H+) yang berasosiasi (berikatan) dengan sebuah ion hidroksida (OH-).

Elektrolisis air

Molekul air dapat diuraikan menjadi unsur-unsur asalnya dengan mengalirinya arus listrik. Proses ini disebut elektrolisis air. Pada katoda, dua molekul air bereaksi dengan menangkap dua elektron, tereduksi menjadi gas H2 dan ion hidrokida (OH-). Sementara itu pada anoda, dua molekul air lain terurai menjadi gas oksigen (O2), melepaskan 4 ion H+ serta mengalirkan elektron ke katoda. Ion H+ dan OH- mengalami netralisasi sehingga terbentuk kembali beberapa molekul air. Reaksi keseluruhan yang setara dari elektrolisis air dapat dituliskan sebagai berikut.
      \mbox{ }2H_{2}O(l) \rightarrow 2H_{2}(g) + O_{2}(g)\,
Gas hidrogen dan oksigen yang dihasilkan dari reaksi ini membentuk gelembung pada elektroda dan dapat dikumpulkan. Prinsip ini kemudian dimanfaatkan untuk menghasilkan hidrogen dan hidrogen peroksida (H2O2) yang dapat digunakan sebagai bahan bakar kendaraan hidrogen.[8][9][10]

Kelarutan (solvasi)

Air adalah pelarut yang kuat, melarutkan banyak jenis zat kimia. Zat-zat yang bercampur dan larut dengan baik dalam air (misalnya garam-garam) disebut sebagai zat-zat "hidrofilik" (pencinta air), dan zat-zat yang tidak mudah tercampur dengan air (misalnya lemak dan minyak), disebut sebagai zat-zat "hidrofobik" (takut-air). Kelarutan suatu zat dalam air ditentukan oleh dapat tidaknya zat tersebut menandingi kekuatan gaya tarik-menarik listrik (gaya intermolekul dipol-dipol) antara molekul-molekul air. Jika suatu zat tidak mampu menandingi gaya tarik-menarik antar molekul air, molekul-molekul zat tersebut tidak larut dan akan mengendap dalam air.
Butir-butir embun menempel pada jaring laba-laba.

Kohesi dan adhesi

Air menempel pada sesamanya (kohesi) karena air bersifat polar. Air memiliki sejumlah muatan parsial negatif (σ-) dekat atom oksigen akibat pasangan elektron yang (hampir) tidak digunakan bersama, dan sejumlah muatan parsial positif (σ+) dekat atom oksigen. Dalam air hal ini terjadi karena atom oksigen bersifat lebih elektronegatif dibandingkan atom hidrogen—yang berarti, ia (atom oksigen) memiliki lebih "kekuatan tarik" pada elektron-elektron yang dimiliki bersama dalam molekul, menarik elektron-elektron lebih dekat ke arahnya (juga berarti menarik muatan negatif elektron-elektron tersebut) dan membuat daerah di sekitar atom oksigen bermuatan lebih negatif ketimbang daerah-daerah di sekitar kedua atom hidrogen.
Air memiliki pula sifat adhesi yang tinggi disebabkan oleh sifat alami ke-polar-annya.

Tegangan permukaan

Bunga daisy ini berada di bawah permukaan air, akan tetapi dapat mekar dengan tanpa terganggu. Tegangan permukaan mencegah air untuk menenggelamkan bunga tersebut.
Air memiliki tegangan permukaan yang besar yang disebabkan oleh kuatnya sifat kohesi antar molekul-molekul air. Hal ini dapat diamati saat sejumlah kecil air ditempatkan dalam sebuah permukaan yang tak dapat terbasahi atau terlarutkan (non-soluble); air tersebut akan berkumpul sebagai sebuah tetesan. Di atas sebuah permukaan gelas yang amat bersih atau bepermukaan amat halus air dapat membentuk suatu lapisan tipis (thin film) karena gaya tarik molekular antara gelas dan molekul air (gaya adhesi) lebih kuat ketimbang gaya kohesi antar molekul air.
Dalam sel-sel biologi dan organel-organel, air bersentuhan dengan membran dan permukaan protein yang bersifat hidrofilik; yaitu, permukaan-permukaan yang memiliki ketertarikan kuat terhadap air. Irvin LangmuirV. Adrian Parsegian dari National Institute of Health. Gaya-gaya ini penting terutama saat sel-sel terdehidrasi saat bersentuhan langsung dengan ruang luar yang kering atau pendinginan di luar sel (extracellular freezing). mengamati suatu gaya tolak yang kuat antar permukaan-permukaan hidrofilik. Untuk melakukan dehidrasi suatu permukaan hidrofilik — dalam arti melepaskan lapisan yang terikat dengan kuat dari hidrasi air — perlu dilakukan kerja sungguh-sungguh melawan gaya-gaya ini, yang disebut gaya-gaya hidrasi. Gaya-gaya tersebut amat besar nilainya akan tetapi meluruh dengan cepat dalam rentang nanometer atau lebih kecil. Pentingnya gaya-gaya ini dalam biologi telah dipelajari secara ekstensif oleh

VITAMIN

Vitamin adalah suatu zat senyawa kompleks yang sangat dibutuhkan oleh tubuh kita yang berfungsi untuk mambantu pengaturan atau proses kegiatan tubuh. Tanpa vitamin manusia, hewan dan makhluk hidup lainnya tidak akan dapat melakukan aktifitas hidup dan kekurangan vitamin dapat menyebabkan memperbesar peluang terkena penyakit pada tubuh kita.
Vitamin berdasarkan kelarutannya di dalam air :
- Vitamin yang larut di dalam air : Vitamin B dan Vitamin C
- Vitamin yang tidak larut di dalam air : Vitamin A, D, E, dan K atau disingkat Vitamin ADEK.

1. Vitamin A
- sumber vitamin A =
susu, ikan, sayuran berwarna hijau dan kuning, hati, buah-buahan warna merah dan kuning (cabe merah, wortel, pisang, pepaya, dan lain-lain)
- Penyakit yang ditimbulkan akibat kekurangan vitamin A =
rabun senja, katarak, infeksi saluran pernapasan, menurunnya daya tahan tubuh, kulit yang tidak sehat, dan lain-lain.

2. Vitamin B1
- sumber yang mengandung vitamin B1 =
gandum, daging, susu, kacang hijau, ragi, beras, telur, dan sebagainya
- Penyakit yang ditimbulkan akibat kekurangan vitamin B1 =
kulit kering/kusik/busik, kulit bersisik, daya tahan tubuh berkurang.

3. Vitamin B2
- sumber yang mengandung vitamin B2 =
sayur-sayuran segar, kacang kedelai, kuning telur, susu, dan banyak lagi lainnya.
- Penyakit yang ditimbulkan akibat kekurangan vitamin B2 =
turunnya daya tahan tubuh, kilit kering bersisik, mulut kering, bibir pecah-pecah, sariawan, dan sebagainya.

4. Vitamin B3
- sumber yang mengandung vitamin B3 =
buah-buahan, gandum, ragi, hati, ikan, ginjal, kentang manis, daging unggas dan sebagainya
- Penyakit yang ditimbulkan akibat kekurangan vitamin B3 =
terganggunya sistem pencernaan, otot mudah keram dan kejang, insomnia, bedan lemas, mudah muntah dan mual-mual, dan lain-lain

5. Vitamin B5
- sumber yang mengandung vitamin B5 =
daging, susu, sayur mayur hijau, ginjal, hati, kacang ijo, dan banyak lagi yang lain.
- Penyakit yang ditimbulkan akibat kekurangan vitamin B5 =
otot mudah menjadi kram, sulit tidur, kulit pecah-pecah dan bersisik, dan lain-lain

6. Vitamin B6
- sumber yang mengandung vitamin B6 =
kacang-kacangan, jagung, beras, hati, ikan, beras tumbuk, ragi, daging, dan lain-lain.
- Penyakit yang ditimbulkan akibat kekurangan vitamin B6 =
pelagra alias kulit pecah-pecah, keram pada otot, insomnia atau sulit tidur, dan banyak lagi lainnya.

7. Vitamin B12
- sumber yang mengandung vitamin B12 =
telur, hati, daging, dan lainnya
- Penyakit yang ditimbulkan akibat kekurangan vitamin B12 =
kurang darah atau anemia, gampang capek/lelah/lesu/lemes/lemas, penyakit pada kulit, dan sebagainya

8. Vitamin C
- sumber yang mengandung vitamin C =
jambu klutuk atau jambu batu, jeruk, tomat, nanas, sayur segar, dan lain sebagainya
- Penyakit yang ditimbulkan akibat kekurangan vitamin C =
mudah infeksi pada luka, gusi berdarah, rasa nyeri pada persendian, dan lain-lain

9. Vitamin D
- sumber yang mengandung vitamin D =
minyak ikan, susu, telur, keju, dan lain-lain
- Penyakit yang ditimbulkan akibat kekurangan vitamin D =
gigi akan lebih mudah rusak, otok bisa mengalami kejang-kejang, pertumbuhan tulang tidak normal yang biasanya betis kaki akan membentuk huruf O atau X.

10. Vitamin E
- sumber yang mengandung vitamin E =
ikan, ayam, kuning telur, kecambah, ragi, minyak tumbuh-tumbuhan, havermut, dsb
- Penyakit yang ditimbulkan akibat kekurangan vitamin E =
bisa mandul baik pria maupun wanita, gangguan syaraf dan otot, dll

11. Vitamin K
- sumber yang mengandung vitamin K =
susu, kuning telur, sayuran segar, dkk
- Penyakit yang ditimbulkan akibat kekurangan vitamin K =
darah sulit membeku bila terluka/berdarah/luka/pendarahan, pendarahan di dalam tubuh, dan sebagainya

Minggu, 12 Desember 2010

LEMAK

Lemak

Lemak juga merupakan sumber nergi dan merupakan sumber cadangan energy. Lemak tersusun atas karbon, hydrogen, dan oksigen. Lemak disimpan dibawah jaringan kulit

Setiap pembakaran 1 gram lemak menghasilkan 9,3 gram kalori energy

Lemak merupakan penghasil energy yang lebih tinggi dibandingkan karbohidrat. Selain itu lemak juga berfungsi sebagai pelindung organ-organ dalam tubuh,sebagai cadangan makanan sebagai isolator dibawah kulit dan sebagai pelarut beberapa vitamin (A, D, E dan K). pada proses pencernaan di dalam tubuh, lemak akan dihidrolisi menjadi asam lemak dan gliserol dengan bantuan enzim.
Berdasakan asalnya lemak dikelompokkan menjadi dua golongan sebagai berikut :
a. Lemak nabati adalah lemak yang berasal dari tumbuh-tumbuhan seperti minyak kelapa sawit, kacang tanah , kemiri dan adpokat.
b. Lemak hewani adalah lemak yang berasal dari hewan misalnya ikan, minyak ikan, daging dan susu.
Berdasarkan wujud zatnya, lemak dibedakan menjadi lemak cair dan lemak padat. Contoh lemak cair yakni minyak goring, minyak kedelai, dan minyak ikan. Contoh lemak padat yaitu mentega, margarine.

PROTEIN

PROTEIN
Protein adalah segolongan besar senyawa organik yang dijumpai dalam semua makhluk hidup. Protein terdiri dari karbon, hidrogen, nitrogen, dan kebanyakan juga mengandung sulfur. Bobot molekulnya berkisar dari 6000 sampai beberapa juta. Molekul protein terdiri dari satu atau beberapa panjang polipeptida dari asam-asam amino yang terikat dengan urutan yang khas. Urutan ini dinamakan struktur primer dari protein. Polipeptida ini dapat melipat atau menggulung. Sifat dan banyaknya pelipatan menyebabkan timbulnya struktur sekunder. Bentuk tiga dimensi dari polipeptida yang menggulung atau melipat ini dinamakan struktur tersier. Struktur kuartener muncul dari hubungan struktural beberapa polipeptida yang terlibat. Jika dipanaskan di atas 50 oC atau dikenai asam atau basa kuat, protein kehilangan struktur tersiernya yang khas dan dapat membentuk koagulat yang tak larut (misalnya putih telur). Proses ini biasanya mentakaktifkan sifat hayatinya.
Protein dalam bahan makanan yang dikonsumsi manusia akan diserap oleh usus dalam bentuk asam amino. Kadang-kadang asam amino yang merupakan peptida dan molekul-molekul protein kecil dapat juga diserap melalui dinding usus, masuk ke dalam pembuluh darah. Hal semacam inilah yang akan menghasilkan reaksi-reaksi alergik dalam tubuh yang seringkali timbul pada orang yang memakan bahan makanan yang mengandung protein seperti susu, ikan laut, udang, telur dan sebagainya.
Ada empat tingkat struktur dasar protein, yaitu struktur primer, sekunder, tersier, dan kuartener. Struktur primer menunjukkan jumlah, jenis dan urutan asam amino dalam molekul protein. Oleh karena ikatan antara asam amino ialah ikatan peptida, maka struktur primer protein juga menunjukkan ikatan peptida yang urutannya diketahui. Untuk mengetahui jenis, jumlah dan urutan asam amino dalam protein dilakukan analisis yang terdiri dari beberapa tahap yaitu:
1.Penentuan jumlah rantai polipeptida yang berdiri sendiri.
2.Pemecahan ikatan antara rantai polipeptida tersebut.
3.Pemecahan masing-masing rantai polipeptida, dan
4. Analisis urutan asam amino pada rantai polipeptida.
Penentuan kadar protein dapat dilakukan dengan berbagai metode bergantung pada jenis sampel dan ketersediaan alat serta bahan (pereaksi). Metode yang umum digunakan adalah metode Kjeldahl, Lowry dan Biuret. Penentuan kadar protein dengan metode biuret didasarkan atas pengukuran absorban dari senyawa kompleks antara protein dengan pereaksi biuret yang berwarna ungu. Hal ini terjadi apabila protein bereaksi dengan tembaga (salah satu komponen dari biuret) dalam suasana basa.

STRUKTUR DAN FUNGSI SEL


Penelitian menunjukkan bahwa satuan unit terkecil dari kehidupan adalah Sel. Kata “sel” itu sendiri dikemukakan oleh Robert Hooke yang berarti “kotak-kotak kosong”, setelah ia mengamati sayatan gabus dengan mikroskop.
Selanjutnya disimpulkan bahwa sel terdiri dari kesatuan zat yang dinamakan Protoplasma. Istilah protoplasma pertama kali dipakai oleh Johannes Purkinje; menurut Johannes Purkinje protoplasma dibagi menjadi dua bagian yaitu Sitoplasma dan Nukleoplasma
Robert Brown mengemukakan bahwa Nukleus (inti sel) adalah bagian yang memegang peranan penting dalam sel,Rudolf Virchow mengemukakan sel itu berasal dari sel (Omnis Cellula E Cellula).
ANATOMI DAN FISIOLOGI SEL

Secara anatomis sel dibagi menjadi 3 bagian, yaitu:
1. Selaput Plasma (Membran Plasma atau Plasmalemma).
2. Sitoplasma dan Organel Sel.
3. Inti Sel (Nukleus).
1. Selaput Plasma (Plasmalemma)Yaitu selaput atau membran sel yang terletak paling luar yang tersusun dari senyawa kimia Lipoprotein (gabungan dari senyawa lemak atau Lipid dan senyawa Protein).
Lipoprotein ini tersusun atas 3 lapisan yang jika ditinjau dari luar ke dalam urutannya adalah:Protein – Lipid – Protein Þ Trilaminer Layer
Lemak bersifat Hidrofebik (tidak larut dalam air) sedangkan protein bersifat Hidrofilik (larut dalam air); oleh karena itu selaput plasma bersifat Selektif Permeabel atau Semi Permeabel (teori dari Overton).
Selektif permeabel berarti hanya dapat memasukkan /di lewati molekul tertentu saja.
Fungsi dari selaput plasma ini adalah menyelenggarakan Transportasi zat dari sel yang satu ke sel yang lain.
Khusus pada sel tumbahan, selain mempunyai selaput plasma masih ada satu struktur lagi yang letaknya di luar selaput plasma yang disebut Dinding Sel (Cell Wall).
Dinding sel tersusun dari dua lapis senyawa Selulosa, di antara kedua lapisan selulosa tadi terdapat rongga yang dinamakan Lamel Tengah (Middle Lamel) yang dapat terisi oleh zat-zat penguat seperti Lignin, Chitine, Pektin, Suberine dan lain-lainSelain itu pada dinding sel tumbuhan kadang-kadang terdapat celah yang disebut Noktah. Pada Noktah/Pit sering terdapat penjuluran Sitoplasma yang disebut Plasmodesma yang fungsinya hampir sama dengan fungsi saraf pada hewan.
2. Sitoplasma dan Organel SelBagian yang cair dalam sel dinamakan Sitoplasma khusus untuk cairan yang berada dalam inti sel dinamakan Nukleoplasma), sedang bagian yang padat dan memiliki fungsi tertentu digunakan Organel Sel.
Penyusun utama dari sitoplasma adalah air (90%), berfungsi sebagai pelarut zat-zat kimia serta sebagai media terjadinya reaksi kirnia sel.Organel sel adalah benda-benda solid yang terdapat di dalam sitoplasma dan bersifat hidup(menjalankan fungsi-fungsi kehidupan).
Organel Sel tersebut antara lain :
a. Retikulum Endoplasma (RE.)Yaitu struktur berbentuk benang-benang yang bermuara di inti sel.
Dikenal dua jenis RE yaitu :• RE. Granuler (Rough E.R)• RE. Agranuler (Smooth E.R)
Fungsi R.E. adalah : sebagai alat transportasi zat-zat di dalam sel itu sendiri. Struktur R.E. hanya dapat dilihat dengan mikroskop elektron.
b. Ribosom (Ergastoplasma)Struktur ini berbentuk bulat terdiri dari dua partikel besar dan kecil, ada yang melekat sepanjang R.E. dan ada pula yang soliter. Ribosom merupakan organel sel terkecil yang tersuspensi di dalam sel.
Fungsi dari ribosom adalah : tempat sintesis protein.Struktur ini hanya dapat dilihat dengan mikroskop elektron.
c. Miitokondria (The Power House)Struktur berbentuk seperti cerutu ini mempunyai dua lapis membran.Lapisan dalamnya berlekuk-lekuk dan dinamakan KristaFungsi mitokondria adalah sebagai pusat respirasi seluler yang menghasilkan banyak ATP (energi) ; karena itu mitokondria diberi julukan “The Power House”.
d. LisosomFungsi dari organel ini adalah sebagai penghasil dan penyimpan enzim pencernaan seluler. Salah satu enzi nnya itu bernama Lisozym.
e. Badan Golgi (Apparatus Golgi = Diktiosom)Organel ini dihubungkan dengan fungsi ekskresi sel, dan struktur ini dapat dilihat dengan menggunakan mikroskop cahaya biasa.Organel ini banyak dijumpai pada organ tubuh yang melaksanakan fungsi ekskresi, misalnya ginjal.
f. Sentrosom (Sentriol)Struktur berbentuk bintang yang berfungsi dalam pembelahan sel (Mitosis maupun Meiosis). Sentrosom bertindak sebagai benda kutub dalam mitosis dan meiosis.Struktur ini hanya dapat dilihat dengan menggunakan mikroskop elektron.
g. PlastidaDapat dilihat dengan mikroskop cahaya biasa.
Dikenal tiga jenis plastida yaitu :
1. Lekoplas (plastida berwarna putih berfungsi sebagai penyimpan makanan),terdiri dari:
• Amiloplas (untak menyimpan amilum) dan,• Elaioplas (Lipidoplas) (untukmenyimpan lemak/minyak).• Proteoplas (untuk menyimpan protein).
2. Kloroplas yaitu plastida berwarna hijau. Plastida ini berfungsi menghasilkan klorofil dan sebagai tempat berlangsungnya fotosintesis.
3. Kromoplasyaitu plastida yang mengandung pigmen, misalnya :• Karotin (kuning)• Fikodanin (biru)• Fikosantin (kuning)• Fikoeritrin (merah)
h. Vakuola (RonggaSel)Beberapa ahli tidak memasukkan vakuola sebagai organel sel. Benda ini dapat dilihat dengan mikroskop cahaya biasa. Selaput pembatas antara vakuola dengan sitoplasma disebut TonoplasVakuola berisi :• garam-garam organik• glikosida• tanin (zat penyamak)• minyak eteris (misalnya Jasmine pada melati, Roseine pada mawar Zingiberine pada jahe)• alkaloid (misalnya Kafein, Kinin, Nikotin, Likopersin dan lain-lain)• enzim• butir-butir patiPada boberapa spesies dikenal adanya vakuola kontraktil dan vaknola non kontraktil.
i. MikrotubulusBerbentuk benang silindris, kaku, berfungsi untuk mempertahankan bentuk sel dan sebagai “rangka sel”. Contoh organel ini antara lain benang-benang gelembung pembelahan Selain itu mikrotubulus berguna dalam pembentakan Sentriol, Flagela dan Silia.
j. MikrofilamenSeperti Mikrotubulus, tetapi lebih lembut. Terbentuk dari komponen utamanya yaitu protein aktin dan miosin (seperti pada otot). Mikrofilamen berperan dalam pergerakan sel.k. Peroksisom (Badan Mikro)Ukurannya sama seperti Lisosom. Organel ini senantiasa berasosiasi dengan organel lain, dan banyak mengandung enzim oksidase dan katalase (banyak disimpan dalam sel-sel hati).
3. Inti Sel (Nukleus)Inti sel terdiri dari bagian-bagian yaitu :• Selapue Inti (Karioteka)• Nukleoplasma (Kariolimfa)• Kromatin / Kromosom • Nukleolus(anak inti).Berdasarkan ada tidaknya selaput inti kita mengenal 2 penggolongan sel yaitu :• Sel Prokariotik (sel yang tidak memiliki selaput inti), misalnya dijumpaipada bakteri, ganggang biru.• Sel Eukariotik (sel yang memiliki selaput inti).
Fungsi dari inti sel adalah : mengatur semua aktivitas (kegiatan) sel, karena di dalam inti sel terdapat kromosom yang berisi ADN yang mengatur sintesis protein

Karbohidrat


Pengertian

Karbohidrat adalah senyawa organik terdiri dari unsur karbon, hidrogen, dan oksigen. contoh; glukosa C6H12O6, sukrosa C12H22O11, sellulosa (C6H10O5)n. Rumus umum karbohidrat Cn(H2O)m.
Karena komposisi yang demikian, senyawa ini pernah disangka sebagai hidrat karbon, tetapi sejak 1880, senyawa tersebut bukan hidrat dari karbon. Nama lain dari karbohidrat adalah sakarida, berasal dari bahasa Arab "sakkar" artinya gula. Karbohidrat sederhana mempunyai rasa manis sehingga dikaitkan dengan gula. Melihat struktur molekulnya, karbohidrat lebih tepat didefinisikan sebagai suatu polihidroksialdehid atau polihidroksiketon. Contoh glukosa; adalah suatu polihidroksi aldehid karena mempunyai satu gugus aldehid da 5 gugus hidroksil (OH).

Klasifikasi
 
Karbohidrat terbagi menjadi 3 kelompok;
  1. monosakarida, yi terdiri atas 3-6 atom C dan zat ini tidak dapat lagi dihidrolisis oleh larutan asam dalam air menjadi karbohidrat yg lebih sederhana.
  2. disakarida, yi senyawanya terbentuk dari 2 molekul monosakarida yg sejenis atau tidak. Disakarida dpt dihidrolisis oleh larutan asam dalam air sehingga terurai menjadi 2 molekul monosakarida.
  3. polisakarida, yi senyawa yg terdiri dari gabungan molekul2 monosakarida yg banyak jumlahnya, senyawa ini bisa dihidrolisis menjadi banyak molekul monosakarida.
Fungsi
 
Bagi manusia; sbg sumber energi. Bagi tumbuhan; amilum sebagai cadangan makanan, sellulosa sbg pembentuk kerangka bagi tumbuhan.
Tumbuhan mendapat amilum dan selulosa dari glukosa. Glukosa dihasilkan pada fotosintesis
Beberapa monosakarida penting
Glukosa
Glukosa disebut juga gula anggur karena terdapat dalam buah anggur, gula darah karena terdapat dalam darah atau dekstrosa karena memutarkan bidang polarisasi kekanan. Glukosa merupakan monomer dari polisakarida terpenting yaitu amilum, selulosa dan glikogen. Glukosa merupakan senyawa organik terbanyak. terdapat pada hidrolisis amilum, sukrosa, maltosa, dan laktosa.
Fruktosa
Fruktosa terdapat dalam buah2an, merupakan gula yang paling manis. Bersama2 dengan glukosa merupakan komponen utama dari madu. Larutannya merupakan pemutar kiri sehingga fruktosa disebut juga levulosa.
Ribosa dan 2-deoksiribosa
Ribosa da 2-deoksiribosa adalah gula pentosa yg membentuk RNA dan DNA.
Sifat2 monosakarida
  1. semua monosakarida zat padat putih, mudah larut dalam air.
  2. larutannya bersifat optis aktif.
  3. larutan monosakarida yg baru dibuat mengalami perubahan sudut putaran disebut mutarrotasi.
  4. contoh larutan alfaglukosa yang baru dibuat mempunyai putaran jenis + 113` akhirnya tetap pada + 52,7`.
  5. umumnya disakarida memperlihatkan mutarrotasi, tetapi polisakarida tidak.
  6. semua monosakarida merupakan reduktor sehingga disebut gula pereduksi.
Identifikasi monosakarida
  1. uji umum utk karbohidrat adalah uji Molisch. bila larutan karbohidrat diberi beberapa tetes larutan alfa-naftol, kemudian H2SO4 pekat secukupnya sehingga terbentuk 2 lapisan cairan, pada bidang batas kedua lapisan itu terbentuk cincin ungu.
  2. gula pereduksi yaitu monosakarida dan disakarida kecuali sukrosa dapat ditunjukkan dg pereaksi Fehling atau Bennedict. Gula pereduksi bereaksi dg pereaksi Fehling atau Benedict menghasilkan endapan merah bata (Cu2O). Selain Pereaksi Benedict dan Fehling, gula pereduksi juga bereaksi positif dg pereaksi Tollens.
  3. reaksi Seliwanoff (khusus menunjukkan adanya fruktosa). Pereaksi seliwanoff terdiri dari serbuk resorsinol + HCl encer. Bila fruktosa diberi pereaksi seliwanoff dan dipanaskan dlm air mendidih selama 10 menit akan terjadi perubahan warna menjadi lebih tua.
 
O                                        O
║                                        ║
C    H                                 C    OH
 │                                        │
(CHOH)4    + 2CUO        (CHOH)4   + CU2O↓
  │                      Fehling    │                 cermin tembaga
CH2OH                              CH2OH

Jumat, 26 November 2010

BIOKIMIA

Biokimia mendeskripsikan stuktur, organisasi, dan fungsi dalam molekul
makhluk hidup. Misalnya bagaimana stuktur kimia dari sebuah komponen makhluk
hidup, bagaimana mahluk hidup menghasilkan energi untuk melangsungkan hidup,
perubahan kimia yang menyertai reproduksi, penuaan, dan kematian dari sel
organisme. Serta bagaimana reaksi kimia dikendalikan oleh sel hidup
Biokimia dapat di bagi menjadi tiga prinsip yaitu:
• 1. stuktur kimia dari komponen mahluk hidup dan hubungan antara
• struktur kimia dengan fungsi biologis.
• 2. mempelajari metabolisme yaitu keseluruhan reaksi kimia dalam
• mahluk hidup
• 3. proses kimia dan substansi yang menyimpan dan mengirimkan
• informasi biologis, serta molekul genetis (sifat keturunan)
• Friedrich Wohler menyakini bahwa mahlik hidup di susun oleh substansi yang secara
kualitatif berbeda dengan benda mati, namun tidak dapat diketahui dengan hukum-
hukum kimia dan fisika pada waktu itu.kemudian ia menemukan bahwa suatu
senyawa organik dapat disintesis dari senyawa anorganik. Wohler mensintesis urea
dengan menggunakan ammonium sianat.
Bermula dari sebuah penemuan tentang gen yang merupakan sebuah unit
informasi tentang hereditas, yaitu pada pertengahan abad-19 oleh Gregore Mendel,
diketahui bahwa gen terdapat dalam kromosom. Meskipun sampai pertengahan abad
ke-20 tidak seorangpun yang dapat mengisolasi sebuah gen atau menemukan stuktur
kimianya. Kromosom disusun oleh asam nukleat. Asam nukleat baru diisolasi pada
tahun 1869 oleh Friedriek Mieschn, tetapi struktur kimianya masih sangat sulit
dimengerti. Banyak ilmuan percaya bahwa protein dengan struktur komplekslah yang membawa informasi genetik, namun pernyataan tersebut salah. Dengan percobaan
pada tahun 1940 sampai 1960 ditemukan bahwa deoxyribonucleic acid (DNA) adalah
yang membawa informasi genetik.
Saat ini ada dua tekhnik penelitian yang dijadikan acuan dalam penelitian
biokimia yaitu mikroskop elektron, yang dapat membaca stuktur sel secara detail, dan
difraksi sinar-X yang dapat memberikan gambaran struktur tiga dimensi dari molekul
biologis yang besar.
Biokimia menjelaskan secara luas hal-hal yang dipelajari dari kima organik,
menjelaskan bagian-bagian dari biomolekul. Dalam dunia kedokteran, yang semakin
menambahkan pemahaman kita tentang suatu keadaan penyakit dari segi molekular;
nutrisi, yang metabolismenya dijelaskan dalam persyaratan makanan untuk
memelihara kesehatan; mikrobiologi, yang ditunjukan dengan organisme sel tuggal
dan virus untuk menjelaskan langkah metabolisme dan pengaturan mekanisme nya;
dari fisiologi, proses hidup pada sebuah sel dan level jaringan. Dengan demikian,
terbuka pintu-pintu untuk pemeriksaan molekular; dari sel biologi yang menjelaskan
sebuah divisi biokimia tentang kerja dalam sebuah sel; dan genetik, serta menjelaskan
mekanisme-mekanismeyang dapat memberikan keterangan tentang sel atau
organisme berdasrkan suatu ciri biokimia.

● Biokimia Sebagai Sebuah Ilmu Pengetahuan Kimia
Untuk mengerti dampak kimia dalam biologis makhluk hidup, kita harus
mengerti elemen kimia dari mahluk hidup dan stuktur lengkap dari ratusan bahan
biologis, fungsinya, dan peranannya dalam reaksi metabolisme. Kita harus mengerti
stokiometri dan mekanisme dari banyak reaksi termasuk yang melibatkan banyak
molekul (biopolimer) dari yang rendah hingga tinggi dan interaksinya dengan
molekul lain serta peranannya dalam proses kehidupan. Seluruh bentuk kehidupan,
dari yang paling sederhana dan terkecil hingga yang terbesar dan paling kompleks
disusun dari elemen kimia yang sama jika dikembalikan pada tipe molekulnya.
Tujuan mempelajari biokimia adalah untuk mempelajari hal kimia yang mendasari
penomena biologis. Pertama-tama kita mempelajari pandangan dasar tentang
biokimia termasuk informasi dasar tentang metodologi yang digunakan. Kedua,
mempelajari tentang struktur, fungsi, dan informasi dari melekul biologis yang
penting. Ketiga, kita akan fokus mempelajari tentang salah satu senyawa yang
terpenting yaitu semua senyawa yang terdapat dalamlapisan biosfer, senyawa yang
paling melimpah adalah air karena 70 sampai 90% berat dari sel adalah air.

● Sel dan Organisme sebagai satu kesatuan biokimia
Salah satu kontribusi terpenting biokimia untuk kehidupan adalah kita dapat mengerti
bagaimana proses kimia dapat menghasilkan suatu perintah. Proses yang paling
membedakan organisme dengan benda lainnya adalah reproduksi. kontras dengan
kebanyakan sel, virus dan yang lainnya bahkan organisme nonseluler yang sedikit
kompleks seperti parasit atau simbiotik, mereka dapat bertahan pada sel induk dengan
membelah diri. Untuk semua Organisme, bersel maupun tidak, sel merupakan pusat
kegiatan dan sell merupakan kesatuan dasar untuk bereproduksi.
Biokimia menggambarkan sell sebagai sesuatu yang sangat kompleks dan merupakan
mesin yang sangat halus. Mesin ini meiliki kemampuan yang lebih jika dibandingkan
dengan mesin buatan tangan manusia.